3.2.3 \(\int \frac {\sqrt {a+b x+c x^2}}{(d+e x+f x^2)^2} \, dx\) [103]

Optimal. Leaf size=488 \[ -\frac {(e+2 f x) \sqrt {a+b x+c x^2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}-\frac {\left (f (b e-4 a f)-(c e-b f) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \left (e^2-4 d f\right )^{3/2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {\left (f (b e-4 a f)-(c e-b f) \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \left (e^2-4 d f\right )^{3/2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}} \]

[Out]

-(2*f*x+e)*(c*x^2+b*x+a)^(1/2)/(-4*d*f+e^2)/(f*x^2+e*x+d)-1/2*arctanh(1/4*(4*a*f+2*x*(b*f-c*(e-(-4*d*f+e^2)^(1
/2)))-b*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e^
2)^(1/2))^(1/2))*(f*(-4*a*f+b*e)-(-b*f+c*e)*(e-(-4*d*f+e^2)^(1/2)))/(-4*d*f+e^2)^(3/2)*2^(1/2)/(c*e^2-2*c*d*f-
b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2)+1/2*arctanh(1/4*(4*a*f-b*(e+(-4*d*f+e^2)^(1/2))+2*x*(b*f-c*
(e+(-4*d*f+e^2)^(1/2))))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2
))^(1/2))*(f*(-4*a*f+b*e)-(-b*f+c*e)*(e+(-4*d*f+e^2)^(1/2)))/(-4*d*f+e^2)^(3/2)*2^(1/2)/(c*e^2-2*c*d*f-b*e*f+2
*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 1.89, antiderivative size = 488, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {985, 1046, 738, 212} \begin {gather*} -\frac {\left (f (b e-4 a f)-\left (e-\sqrt {e^2-4 d f}\right ) (c e-b f)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} \left (e^2-4 d f\right )^{3/2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {\left (f (b e-4 a f)-\left (\sqrt {e^2-4 d f}+e\right ) (c e-b f)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} \left (e^2-4 d f\right )^{3/2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {(e+2 f x) \sqrt {a+b x+c x^2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x + c*x^2]/(d + e*x + f*x^2)^2,x]

[Out]

-(((e + 2*f*x)*Sqrt[a + b*x + c*x^2])/((e^2 - 4*d*f)*(d + e*x + f*x^2))) - ((f*(b*e - 4*a*f) - (c*e - b*f)*(e
- Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(2*S
qrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[
2]*(e^2 - 4*d*f)^(3/2)*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]) + ((f*(b*e - 4
*a*f) - (c*e - b*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt
[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a +
 b*x + c*x^2])])/(Sqrt[2]*(e^2 - 4*d*f)^(3/2)*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 -
4*d*f]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 985

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(b +
2*c*x)*(a + b*x + c*x^2)^(p + 1)*((d + e*x + f*x^2)^q/((b^2 - 4*a*c)*(p + 1))), x] - Dist[1/((b^2 - 4*a*c)*(p
+ 1)), Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[2*c*d*(2*p + 3) + b*e*q + (2*b*f*q + 2*c*e
*(2*p + q + 3))*x + 2*c*f*(2*p + 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c,
0] && NeQ[e^2 - 4*d*f, 0] && LtQ[p, -1] && GtQ[q, 0] &&  !IGtQ[q, 0]

Rule 1046

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x+c x^2}}{\left (d+e x+f x^2\right )^2} \, dx &=-\frac {(e+2 f x) \sqrt {a+b x+c x^2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}-\frac {\int \frac {\frac {1}{2} (b e-4 a f)+(c e-b f) x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{-e^2+4 d f}\\ &=-\frac {(e+2 f x) \sqrt {a+b x+c x^2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}-\frac {\left (c e \left (e-\sqrt {e^2-4 d f}\right )+f \left (4 a f-b \left (2 e-\sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{\left (e^2-4 d f\right )^{3/2}}+\frac {\left (c e \left (e+\sqrt {e^2-4 d f}\right )+f \left (4 a f-b \left (2 e+\sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{\left (e^2-4 d f\right )^{3/2}}\\ &=-\frac {(e+2 f x) \sqrt {a+b x+c x^2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}+\frac {\left (2 \left (c e \left (e-\sqrt {e^2-4 d f}\right )+f \left (4 a f-b \left (2 e-\sqrt {e^2-4 d f}\right )\right )\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\left (e^2-4 d f\right )^{3/2}}-\frac {\left (2 \left (c e \left (e+\sqrt {e^2-4 d f}\right )+f \left (4 a f-b \left (2 e+\sqrt {e^2-4 d f}\right )\right )\right )\right ) \text {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\left (e^2-4 d f\right )^{3/2}}\\ &=-\frac {(e+2 f x) \sqrt {a+b x+c x^2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}+\frac {\left (c e \left (e-\sqrt {e^2-4 d f}\right )+f \left (4 a f-b \left (2 e-\sqrt {e^2-4 d f}\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \left (e^2-4 d f\right )^{3/2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}-\frac {\left (c e \left (e+\sqrt {e^2-4 d f}\right )+f \left (4 a f-b \left (2 e+\sqrt {e^2-4 d f}\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} \left (e^2-4 d f\right )^{3/2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 1.66, size = 972, normalized size = 1.99 \begin {gather*} \frac {-2 e f^2 \sqrt {a+x (b+c x)}-4 f^3 x \sqrt {a+x (b+c x)}-2 c \left (e^2-4 d f\right ) (d+x (e+f x)) \text {RootSum}\left [b^2 d-a b e+a^2 f-4 b \sqrt {c} d \text {$\#$1}+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2+b e \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {4 c e \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-5 b f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+2 \sqrt {c} f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}}{-2 b \sqrt {c} d+a \sqrt {c} e+4 c d \text {$\#$1}+b e \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]+(d+x (e+f x)) \text {RootSum}\left [b^2 d-a b e+a^2 f-4 b \sqrt {c} d \text {$\#$1}+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2+b e \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {8 c^2 e^3 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-32 c^2 d e f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-10 b c e^2 f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+40 b c d f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+b^2 e f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 a c e f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 a b f^3 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+4 c^{3/2} e^2 f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-16 c^{3/2} d f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 b \sqrt {c} e f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+8 a \sqrt {c} f^3 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 c e f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2-2 b f^3 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-2 b \sqrt {c} d+a \sqrt {c} e+4 c d \text {$\#$1}+b e \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{2 f^2 \left (e^2-4 d f\right ) (d+x (e+f x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(d + e*x + f*x^2)^2,x]

[Out]

(-2*e*f^2*Sqrt[a + x*(b + c*x)] - 4*f^3*x*Sqrt[a + x*(b + c*x)] - 2*c*(e^2 - 4*d*f)*(d + x*(e + f*x))*RootSum[
b^2*d - a*b*e + a^2*f - 4*b*Sqrt[c]*d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e
*#1^3 + f*#1^4 & , (4*c*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 5*b*f*Log[-(Sqrt[c]*x) + Sqrt[a + b
*x + c*x^2] - #1] + 2*Sqrt[c]*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1)/(-2*b*Sqrt[c]*d + a*Sqrt[c]
*e + 4*c*d*#1 + b*e*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ] + (d + x*(e + f*x))*RootSum[b^2*d - a*b*e
 + a^2*f - 4*b*Sqrt[c]*d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^
4 & , (8*c^2*e^3*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 32*c^2*d*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x
 + c*x^2] - #1] - 10*b*c*e^2*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + 40*b*c*d*f^2*Log[-(Sqrt[c]*x)
+ Sqrt[a + b*x + c*x^2] - #1] + b^2*e*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*a*c*e*f^2*Log[-(S
qrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*a*b*f^3*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + 4*c^(3/2)
*e^2*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - 16*c^(3/2)*d*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x +
c*x^2] - #1]*#1 - 2*b*Sqrt[c]*e*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + 8*a*Sqrt[c]*f^3*Log[-(
Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + 2*c*e*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2 -
2*b*f^3*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(-2*b*Sqrt[c]*d + a*Sqrt[c]*e + 4*c*d*#1 + b*e*#1
 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ])/(2*f^2*(e^2 - 4*d*f)*(d + x*(e + f*x)))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(4690\) vs. \(2(439)=878\).
time = 0.18, size = 4691, normalized size = 9.61

method result size
default \(\text {Expression too large to display}\) \(4691\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d)^2,x,method=_RETURNVERBOSE)

[Out]

-2*f/(4*d*f-e^2)/(-4*d*f+e^2)^(1/2)*(1/2*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*
f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*
f+c*e^2)/f^2)^(1/2)+1/2/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*ln((1/2/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)+c*(x+1/2*(
e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x
+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2
)/f^2)^(1/2))/c^(1/2)-1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2*2^(
1/2)/((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-b*f*(-4*d*
f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/
2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f
+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d
*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(
x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))+2*f/(4*d*f-e^2)/(-4*d*f+e^2)^(1/2)*(1/2*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))
^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^
2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)+1/2*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*ln((1/2*(c*(-4*d*f+e
^2)^(1/2)+b*f-c*e)/f+c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))/c^(1/2)+((x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+(c*(-
4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c
*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/c^(1/2)-1/2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2
-b*e*f-2*c*d*f+c*e^2)/f^2*2^(1/2)/((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)
/f^2)^(1/2)*ln(((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+(c*(-4*d*f+e^2
)^(1/2)+b*f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c
*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*
f-c*e)/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*
d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))))-1/(4*d*f-e^2)*(-2/(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+
e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*f^2/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*((x+1/2*(e+(-4*d*f+e^2)^(1/2)
)/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4
*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(3/2)+f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/(-b*f*(-4*d*f+e^
2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*(1/2*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*
(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)
*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)+1/2/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*ln((1/2/f*(-c*(-4*d*f+e^2)^
(1/2)+b*f-c*e)+c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d
*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*
a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/c^(1/2)-1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e
*f-2*c*d*f+c*e^2)/f^2*2^(1/2)/((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^
2)^(1/2)*ln(((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+1/f*(-c*(-4*d*f+
e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*
c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)
+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c
*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))+4*c/(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e
+2*a*f^2-b*e*f-2*c*d*f+c*e^2)*f^2*(1/4*(2*c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*
e))/c*((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/
f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)+1/8*(2*c*(-b*f*
(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2-1/f^2*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*
e)^2)/c^(3/2)*ln((1/2/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)+c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x+1/2*(e
+(-4*d*f+e^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-b*f*(-4
*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))))-1/(4*d*f-e^2)*(-2/(b*f*(-4*d
*f+e^2)^(1/2)-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x + a)/(f*x^2 + x*e + d)^2, x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/(f*x**2+e*x+d)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d)^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c\,x^2+b\,x+a}}{{\left (f\,x^2+e\,x+d\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(1/2)/(d + e*x + f*x^2)^2,x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(d + e*x + f*x^2)^2, x)

________________________________________________________________________________________